Tutorial 8

Bimatrix games

Let A, B be two $m \times n$ matrices. In a two-person game, if A is the payoff matrix for Player I, and B is the payoff matrix for Player II, then we call this game a bimatrix game with bi-matrix (A, B).

1. Non-cooperative games

Nash equilibrium

We call a pair of probability vectors $(\boldsymbol{p}, \boldsymbol{q})$ $(\boldsymbol{p} \in \mathcal{P}^m, \boldsymbol{q} \in \mathcal{P}^n)$ a Nash equilibrium for (A, B) if

- (i) $\boldsymbol{p}B\boldsymbol{y}^T \leq \boldsymbol{p}B\boldsymbol{q}^T$, for any $\boldsymbol{y} \in \mathcal{P}^n$.
- (ii) $\boldsymbol{x} A \boldsymbol{q}^T \leq \boldsymbol{p} A \boldsymbol{q}^T$, for any $\boldsymbol{x} \in \mathcal{P}^m$.

Theorem 1 (Nash Theorem). Every bimatrix game has at least one Nash equilibrium.

Solve a non-cooperative game: find all Nash equilibria and the corresponding payoff pairs.

The case that A, B are 2×2 matrices

In this case, there is a simple method to find all Nash equilibria: for $x, y \in [0, 1]$, let

$$\pi(x,y) = \begin{pmatrix} x & 1-x \end{pmatrix} A \begin{pmatrix} y \\ 1-y \end{pmatrix}, \rho(x,y) = \begin{pmatrix} x & 1-x \end{pmatrix} B \begin{pmatrix} y \\ 1-y \end{pmatrix}$$

be the payoff functions of Player I and Player II respectively. Find two sets

 $P = \{(x, y) : \pi(x, y) \text{ attains its maximum at } x \text{ for fixed } y\},\$

 $Q = \{(x, y) : \rho(x, y) \text{ attains its maximum at } y \text{ for fixed } x\}.$

Then the set of all Nash equilibria is given by

$$\{(\mathbf{p}, \mathbf{q}) : \mathbf{p} = (x, 1 - x), \mathbf{q} = (y, 1 - y), (x, y) \in P \cap Q\}$$

2. Cooperative games

Nash bargaining model

We call an $m \times n$ matrix $P = (p_{ij})$ a probability matrix if $p_{ij} \ge 0$ and $\sum_{i,j} p_{ij} = 1$. In this case, we write $P \in \mathcal{P}^{m \times n}$.

In a cooperative game, each $P \in \mathcal{P}^{m \times n}$ gives a **joint strategy**, and we denote the corresponding payoff to Player I and Player II by

$$u(P) = \sum_{i,j} p_{ij} a_{ij}, \ v(P) = \sum_{i,j} p_{ij} b_{ij}.$$

Cooperative region:

$$\mathcal{R} := \operatorname{conv}(\{(a_{ij}, b_{ij}) : 1 \le i \le m, 1 \le j \le n\})$$
$$= \left\{ \sum_{ij} p_{ij}(a_{ij}, b_{ij}) : P = (p_{ij}) \in \mathcal{P}^{m \times n} \right\}.$$

Status quo point: Usually, we let this point be

$$(\mu,\nu) = (v_A, v_{B^T}).$$

Pareto optimal point: a point $(u, v) \in \mathcal{R}$ is said to pareto optimal if

$$u' \ge u, v' \ge v \Rightarrow u' = u, v' = v.$$

Bargaining set: define the bargaining set to be

{pareto optimal points} $\cap \{(u, v) \in \mathcal{R} : u \ge \mu, v \ge \nu\}.$

Bargaining function: let $U = \{(u, v) : u > \mu, v > \nu\}$. Define the bargaining function by

$$g(u,v) = \begin{cases} (u-\mu)(v-\nu) & \text{if } U \neq \emptyset, \\ u+v & \text{otherwise.} \end{cases}$$

Arbitration pair: define the arbitration pair to be the unique point (α, β) in \mathcal{R} , such that

$$g(\alpha, \beta) = \max\{g(u, v) : (u, v) \in \text{bargaining set}\}.$$

Exercise 1. Consider a two-person game with bimatrix

$$(A,B) = \begin{pmatrix} (2,1) & (4,3) \\ (6,2) & (3,1) \end{pmatrix}.$$

(i) Find v_A, v_{B^T} .

(ii) Find all Nash equibria.

(iii) Find and sketch the bargaining set. Find the arbitration pair.

Solution. (i) For $x \in [0, 1]$, we have

$$(x, 1-x)A = (x, 1-x) \begin{pmatrix} 2 & 4 \\ 6 & 3 \end{pmatrix} = (6-4x, 3+x).$$

Let 6 - 4x = 3 + x, we have $x = \frac{3}{5}$ and $v_A = \frac{18}{5}$. Similarly, we have

$$(x, 1-x)B^T = (x, 1-x) \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix} = (3-2x, 1+x).$$

Let 3 - 2x = 1 + x, we have $x = \frac{2}{3}$ and $v_{B^T} = \frac{5}{3}$.

(ii) For $x, y \in [0, 1]$, let

$$\pi(x,y) = \begin{pmatrix} x & 1-x \end{pmatrix} A \begin{pmatrix} y \\ 1-y \end{pmatrix}, \rho(x,y) = \begin{pmatrix} x & 1-x \end{pmatrix} B \begin{pmatrix} y \\ 1-y \end{pmatrix}.$$

We need to find

 $P = \{(x,y) : \pi(x,y) \text{ attains its maximum at } x \text{ for fixed } y\},\$

 $Q = \{(x, y) : \rho(x, y) \text{ attains its maximum at } y \text{ for fixed } x\}.$

To find the set P, consider

$$A\begin{pmatrix} y\\1-y \end{pmatrix} = \begin{pmatrix} 2 & 4\\ 6 & 3 \end{pmatrix} \begin{pmatrix} y\\1-y \end{pmatrix} = \begin{pmatrix} 4-2y\\ 3+3y \end{pmatrix}.$$

Then we have 4 - 2y = 3 + 3y if $y = \frac{1}{5}$, 4 - 2y > 3 + 3y if $0 \le y < \frac{1}{5}$ and 4 - 2y < 3 + 3y if $\frac{1}{5} < y \le y$. Hence

$$P = \left\{ (x, \frac{1}{5}) : 0 \le x \le 1 \right\} \bigcup \left\{ (1, y) : 0 \le y < \frac{1}{5} \right\} \bigcup \left\{ (0, y) : \frac{1}{5} < y \le 1 \right\}.$$

To find the set Q, consider

$$(x, 1-x)B = (x, 1-x) \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} = (2-x, 2x+1).$$

Figure 1

We have 2 - x = 2x + 1 if $x = \frac{1}{3}$, 2 - x > 2x + 1 if $0 \le x < \frac{1}{3}$ and 2 - x < 2x + 1 if $\frac{1}{3} < x \le 1$. Hence

$$Q = \left\{ \left(\frac{1}{3}, y\right) : 0 \le y \le 1 \right\} \bigcup \left\{ (x, 1) : 0 \le x < \frac{1}{3} \right\} \bigcup \left\{ (x, 0) : \frac{1}{3} < x \le 1 \right\}.$$

Draw the graph of P and Q as in Figure 1. Hence we have

$$P \cap Q = \left\{ (0,1), (\frac{1}{3}, \frac{1}{5}), (1,0) \right\}.$$

For p = (0, 1), q = (1, 0),

$$\pi(\boldsymbol{p},\boldsymbol{q}) = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 6 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 6, \ \rho(\boldsymbol{p},\boldsymbol{q}) = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = 2.$$

Similarly, we have for $\boldsymbol{p} = (1,0), q = (0,1), \pi(\boldsymbol{p},\boldsymbol{q}) = 4, \rho(\boldsymbol{p},\boldsymbol{q}) = 3$ and for $\boldsymbol{p} = (\frac{1}{3}, \frac{2}{3}), \boldsymbol{q} = (\frac{1}{5}, \frac{4}{5}), \pi(\boldsymbol{p},\boldsymbol{q}) = \frac{18}{5}, \rho(\boldsymbol{p},\boldsymbol{q}) = \frac{5}{3}$. We may list the Nash

p	q	(π, ρ)
(0, 1)	(1, 0)	(6, 2)
(1, 0)	(0, 1)	(4, 3)
$\left(\frac{1}{3},\frac{2}{3}\right)$	$\left(\frac{1}{5},\frac{4}{5}\right)$	$\left(\frac{18}{5},\frac{5}{3}\right)$

3. Cooperative games

Exercise 2. Consider bimatrix game

$$(A,B) = \begin{pmatrix} (a,2) & (3,0) \\ (2,0) & (2,2) \end{pmatrix},$$

where a > 2 is arbitrary. Find the maximin values of the two players and the arbitrary pair as functions of a.